MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Assisted Superconducting Qubit Readout

Author(s)
Lienhard, Benjamin
Thumbnail
DownloadThesis PDF (56.98Mb)
Advisor
Oliver, William D.
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Quantum computers hold the promise to solve specific problems significantly faster than classical computers. However, to realize a practical quantum computer, the quantum processor’s constituent components, their control, and their readout must be very well-calibrated. Over the last few decades, infrastructure and protocols have been developed to operate small-scale quantum processors efficiently. However, the operation of medium- to large-scale quantum processors presents new engineering challenges. Among those challenges are efficient and high-fidelity multi-qubit control and readout. In particular, qubit-state readout is a significant error source in contemporary superconducting quantum processors. The fidelity of dispersive qubit-state readout depends on the readout pulse shape and frequency as well as the resulting qubit-state discriminator. For a single qubit, fast and high-fidelity readout is achieved with minor changes to the rising and falling edge of a rectangular microwave pulse and a linear matched filter discriminator. However, in resource-efficient, frequency-multiplexed readout of multiple qubits, optimizing the readout pulse shape and discriminator becomes a computationally intensive task. In this thesis, control and readout hardware and software tools for multiple superconducting qubits are developed. First, I discuss the principles to engineer microwave packages for multiple qubits. I designed and engineered a novel multiqubit package to enable efficient qubit control and readout and minimize errors due to interactions between the quantum processor and its immediate environment. Second, I demonstrate deep machine learning techniques to improve frequency-multiplexed superconducting qubit readout pulse shapes and discrimination for a five-qubit system. Compared with currently employed readout methods, these novel techniques reduce the required measurement time, the readout resonator reset, and the discrimination error rate by about 20% each. The developed readout techniques are a significant step towards efficient implementations of near-term quantum algorithms based on iterative optimization and quantum error correction protocols necessary for future universal quantum processors.
Date issued
2021-09
URI
https://hdl.handle.net/1721.1/140024
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.
OSZAR »